Deep Stacking Networks for Low-Resource Chinese Word Segmentation with Transfer Learning

نویسندگان

  • Jingjing Xu
  • Xu Sun
  • Sujian Li
  • Xiaoyan Cai
  • Bingzhen Wei
چکیده

In recent years, neural networks have proven to be effective in Chinese word segmentation. However, this promising performance relies on large-scale training data. Neural networks with conventional architectures cannot achieve the desired results in low-resource datasets due to the lack of labelled training data. In this paper, we propose a deep stacking framework to improve the performance on word segmentation tasks with insufficient data by integrating datasets from diverse domains. Our framework consists of two parts, domain-based models and deep stacking networks. The domain-based models are used to learn knowledge from different datasets. The deep stacking networks are designed to integrate domain-based models. To reduce model conflicts, we innovatively add communication paths among models and design various structures of deep stacking networks, including Gaussianbased Stacking Networks, Concatenate-based Stacking Networks, Sequence-based Stacking Networks and Treebased Stacking Networks. We conduct experiments on six low-resource datasets from various domains. Our proposed framework shows significant performance improvements on all datasets compared with several strong baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Deep Learning for Low-Resource Chinese Word Segmentation with a Novel Neural Network

Recent works have been shown effective in using neural networks for Chinese word segmentation. However, these models rely on large-scale data and are less effective for low-resource datasets because of insufficient training data. Thus, we propose a transfer learning method to improve low-resource word segmentation by leveraging high-resource corpora. First, we train a teacher model on high-reso...

متن کامل

Deep Learning for Chinese Word Segmentation and POS Tagging

This study explores the feasibility of performing Chinese word segmentation (CWS) and POS tagging by deep learning. We try to avoid task-specific feature engineering, and use deep layers of neural networks to discover relevant features to the tasks. We leverage large-scale unlabeled data to improve internal representation of Chinese characters, and use these improved representations to enhance ...

متن کامل

Text Window Denoising Autoencoder: Building Deep Architecture for Chinese Word Segmentation

Deep learning is the new frontier of machine learning research, which has led to many recent breakthroughs in English natural language processing. However, there are inherent differences between Chinese and English, and little work has been done to apply deep learning techniques to Chinese natural language processing. In this paper, we propose a deep neural network model: text window denoising ...

متن کامل

Enhancing LSTM-based Word Segmentation Using Unlabeled Data

Word segmentation problem is widely solved as the sequence labeling problem. The traditional way to this kind of problem is machine learning method like conditional random field with hand-crafted features. Recently, deep learning approaches have achieved state-of-theart performance on word segmentation task and a popular method of them is LSTM networks. This paper gives a method to introduce nu...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.01427  شماره 

صفحات  -

تاریخ انتشار 2017